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zﬁg PREDICTION OF POLYTOMOUS EVENTS:
iy MODEL DESCRIPTION, ALGORITHM DEVELOPMENT
o AND METHODOLOGICAL ASPECTS, WITH AN APPLICATION
) I. O'MUIRCHEARTAIGH
KRR D. P. GAVER
)
h?; 1. Introduction
!'c','
W The prediction of dichotomous events in meteorology {(fog/no fog,
ey
‘f precipitation/no precipitation) has been widely studied. Such predictions are
e-‘g'
§'§ also of interest in reliability and survival analysis, and in manpower
oy
iji planning. The analysis generally involves logistic regression or
%' (equivalently) linear discriminant functions. Most standard statistical
Y ‘
ﬁh_ packages (e.g. BMDP, SAS) provide the facility for performing this analysis in
:“.!Q
A3 M
R some form. Also, the book by Cox (1970) can be consulted.
tr.
~r¢; A natural extension of this problem (and one which has many potential
ah
sg: applications in meteorology and elsewhere) is the situation in which the
e
:3' predictand is polytomous, i.e. has multiple categories. For example, it might
-Qb? be desired to predict visibility (good/marginal/bad) or precipitation
P
B "..
{3{ (none/rain/snow). Two (methodologically) distinct cases can be envisaged,
s .p‘
i::":f viz.
tﬁ{q a. when the predictand involves ordered categories
eyl e
& é b. when the categories are unordered. ‘
) Typically, the former case is the more common in meteorological applications, Ol
= "]
$cﬂ and this is the problem addressed in this report.
] . oo
5} The particular application analyzed here involves 583 records of time to
. ‘.. .
?J' . formation of tropical storms, and associated values of various meteorological L
o . R
153 -— .
o | A

; : . ey L ..-, . |
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variables. The time to storm formation is polytomized and recorded as
1: storm formed within 24 hours
2: storm formed between 24 and 48 hours
3: storm formed between 48 and 72 hours
4: storm did not form
The five meteorological variables recorded were:
Xlt unconditional probability of storm formation — a measure of the
likelihood of storm formation in the particular disturbance
location at the given time of year.

large scale vorticity (computed over 5 Latitude grid).

c‘)>< m><

divergence (computed over 5 Latitude grid).
X4= small scale vorticity (computed over 25 Latitude grid)
Xs: local generation of vorticity (product of X3 and X4).
Our objective was to determine how much predictive information is provided by
the meteorological variables to facilitate prediction of imminence of tropical
storms. Essentially the problem involves regression models where the
dependent variable is ordinal. Much attention has been devoted to this
general problem in the statistical literature of recent years (McCullagh
[1980], McCullagh and Nelder [1983], Green [1984]. Anderson [1984]). The
central concept is that of the generalized linear model (McCullagh and Nelder
[1983]).

In section 2 we describe briefly the concept of generalized models, and
in more detail, the particular model (an extension of [dichotomous] logistic

regression) utilized for our data. In section 3 we summarize the results of

an ad hoc application of the model to our data, present the relevant parameter

estimates, and evaluate the predictive performance of our model. A general
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o
iy
\ﬂ? discussion of our results is presented in section 4, together with suggestions
ot for future work.
o
4
)
ﬁﬁ
Rt 2. The Model.
WM

J\ 2.1 General formulation.
IO
i*‘ Following Green [1984] and McCullagh and Nelder [1983]. we consider a log
hﬁ likelihood L, a function of an n-vector, 1. of predictors. We postulate, in
Y

our model, that the predictor n is functionally dependent on the p-vector B of

;5; parameters of interest. For our particular application, 7m, and P are
)
:tg specified in Section 2.2. The maximum likelihood estimation of B involves
A

B
L. essentially solution of the equations
¥
)I
&
= 5L T

4 3 - Du=0 (1)
My
?f where u = oL
L nxl ~ on
o

(]
KL |
N ‘
T% nxp 6f ‘
& |
e
mi using the notation of Green [1984]. Again following Green, the standard
’l'n.

B Newton-Raphson method for the iterative solution of (1) involves evaluating u.
o

)
a; D and the second derivatives of L for an initial value of . and then solving
&
a} the linear equations
l‘g'
‘ L]
YW -5 " T
i (25 (8" - p) = D' (2)
ga 5B
D
1. ‘.
— for an updated estimate D*. Cr en shows that this {s approximately equivalent

e

s e d
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to the solution of
(0'AD) (8"-B) = D'u (3)

T
6L 8L
where A = E(-b—‘r; (3-'-;) ).

given an initial estimate of B (about which we have some further comments in
Section 2.3). Equation (3) can be solved directly for B*. or, equivalently,
if a weighted least squares program is available, B“ results from regression

A-lu + DB onto the columns of D using weight matrix A.

2.2 Specific Formulation.
In our application the data are in the form of N multinomial samples on
the same set of k(=4) response categories (e.g. categories 1, 2, 3 and 4
indicating storm imminence as described in Section 1). The data may be
arranged as a two-way table of counts ylj' i=1...N; j=1, ...4. The log-

likelihood L is then given by
|

= \
L = f 3 Yy log Py (4) |
J ‘
4
where p, .are the cell probabilities, and 3 p,, = 1.
|
In the case where the categories 1,2,...,k are ordered, McCullagh and

Nelder [1983] and Green [1984] both suggest the model
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where nij represent for fixed i, the cumulative cell probabilities, the matrix

h (xim) represents covariate information and ¢ is a given distribution function.
Lo
" Motivation for their model is provided by considering the response variable as
Fo an arbitrary grouping of an unobservable underlying variable on a continuous
{‘ scale with "cutpoints” 91. "'ek-l' In some applications the GJ's will be |
s
3
4% unknown and will need to be estimated; in others., such as the present one,
Er they will be known, because the categorical variable (storm imminence coded
Wy .
f& 1,2,3,4) really is an arbitrary grouping of an underlying continuous variable
b
r&o based on known cutpoints (in this case that variable is time to storm
e formation with cut-points 91=24. 62=48 and 93=72). For our application, we
' chose ¥ to be the logistic distribution function, viz.,
)
k!
4 1
|:.| ¢ ( X ) = -X ( 6)
at 1+e
"
‘:..
u" N
3? '
& This is the most widely used model in applications and has the advantage that
51 a simple transformation can be used to (a) graphically check the suitability
Wy
N of the model and (b) provide initial values for the iterative estimation
)
J.)‘
s process.
T
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Our model therefore is

= ! (7)

or, in terms of previous notation

n = n(B) (8)

wvhere B = (Bl....ﬁH.TI,...TN). Unless we impose constraints, identifiability
problems can arise. One common expedient (based on the concept of an
underlying continuous variable used for the classification) is to allow an

intercept and scale to write

M

[91—1-2 Xim Bm]

nyy = W o=l ) (9)

i=1,...N; j=1,....k-1.

where 0°'s are known.

A reformulation, more convenient for actual computation

Ny = w(BO + BleJ + ":l"xm”mz) (10)

2.3 Specific Methodology

Ve now apply the general methodology of Section 2.1 to the specific model

(4

.y A AR S
R XK IO




’i';'"! : described in equation (9). This involves two steps

(a) deriving explicit express.ons for A, D and u described in that
‘:;& | section, and
: I (b) Finding a suitable starting value ﬂ* for the iterative reweighted
3 least squares (IRLS) procedure.
AN We describe first the expressions for D, A and u for the special case of
M=1 covariates with k=4 categories. The extension to other cases is

straightforward. If we let

) Tt = (10 Mae M3e Mgpe Tlggr e - Tiya)

Y an

where n = Nx3, then D = 55 is a'matrix given by

e F(8,.x,) ©,F(8,.x,) x;F(8,.x,) \
.5;: F(8,.x;)  6,F(85.x;) x,F(6,.%,)

.‘::.!“,‘ an3 = F(93.x1) 93F(93.x1) xlF(OB‘xl) (11)
J F(68,.x,)  6,F(6,.x,) x,F(8,.%5)

g F(B3.%y)  05F(83.%)  xyF(65.x) /
) ‘Lf where

exp B+ By8 +Byx,}
(1+exp(B,+B,8,+6x 1)

’. F(Gi.xj) = -

aL
Similarly, Ul s % is given by

L)
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o~ u = (12)

-y b

5 O

YN3 _ N4
N3N 1T s

s
22

‘="
)

my and Anxn =F ( T) is given by

03 M2 1

oy M1 yy) M2 M)
J 1 -(ny37114) 1

e M2 (M2 ) (M3 ma) 137y

e 1 '(l_nlz)

R A= 0 T (M2 (171, )
A 1372 132 13

(13)

e 0 —_—
2 M1 (MppMp,)
s etc.

13
545 0 0

(o with tridiagonal 3x3 matrices similar to the one given above along the main

diagonal, and zeroes elsewhere.

~

0‘?‘! U

iy

AR AL AN A BATNEE AL ILAN PRI AN IR MR AN TR ' y 0N
B TR (A b O AW AN AGORIBAOANS T o..':‘,fo‘,':.Q".).,’...:e“?g. ’{'-"':?'.'t



g e

T T DT TI Y WY W e Lo Aa A)a atm A g Ate Sbe ala Sta A g o_g dos S A i 8l Al Al doi Bk Sad el A8 Aok 4

Each of A, D and u depends on the unknown parameters fB. Given an initial
value for B we can evaluate A, D and u and commence the iterative process.
The initial values can be obtained by noting that if we apply a logit

transformation to yij in equation (10) to give
My
én — = Po + Blej + B,x (14)

then these logits are linear in the parameters 8. Initial estimates of B can

be obtained by constructing empirical logits.

J 1
. ( yir) + 2
2, = 1n {£=2 } (15)
1 3 )
n-(2 vy, .*3)

r=1

and performing an unweighted least squares analysis for the model of equation
(14) using these empirical logits as the dependent variable.

Two points should be noted in relation to the estimation of initial
values for B. Firstly, the IRLS procedure is quite sensitive to the choice of
initial value, (see Green (1984)), and a poor choice can lead to
non-convergence of the algorithm. Secondly, to obtain initial values by this
procedure, it may be necessary to group the observations into categories based
on values of the independent variables(s). If the data are not so grouped,
(and our data consists essentially of multinomial samples of size 1), then all

will be either O or 1 in our case this will lead to all the empirical

logits having value either In 3 or -In 3.

I
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Although, it may be necessary to group the data to obtain starting values
for B, the maximum likelihood estimation of B may be carried out for efther

the grouped or the ungrouped data.

2.4 Computational procedure.

Since a stepwise program was not available, the model given by equation (10)
was estimated separately for each covariate. Using the deviance (the
likelihood ratio statistic against the saturated model) as a measure of
goodness of fit, the best single explanatory variable was Xs. Having thus
determined the optimal single variable for inclusion in the model, we then
proceeded to establish which, if any, variable should next be included in the
model. Due to the non-availability of a package for performing this analysis,
the computation involved was cumbersome; the inclusion of an additional
variable necessitated the re-programming of the computations leading to the
matrices/vectors A, D and u. It was determined that X2 was the next variable
which should be included in the model. A third step of the stepwise procedure
was also carried out, but no additional variable warranted inclusion in the
model .

Accordingly. in evaluating the predictive performance of the model, and
in comparing this performance with those of discriminant analysis and multiple

regression, we used only the explanatory variables X5 and X2.

3. Evaluation of the predictive performance of the el.
3.1 Introduction
The model developed in this paper essentially produces, for given values

of the covariates, estimates of nij' the cumulative category probabilities,

10
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and from these estimates of pij' the actual category probabilities. Hence,
the model provides probability forecasts of the four storm imminence
categories, for a given meteorological situation (as represented by the values
of the meteorological variables). These probabilistic forecasts can be given
directly as such, or may be converted, by methods described in Section 3.2,
into categorical forecasts.

The problem of evaluating statistical forecasts of this type has been,
and continues to be, a topic of major interest in meteorology. In Section
3.3, we consider two very simple methods of evaluating such forecasts; these
two methods do not necessarily lead to the same conclusions in relation to the

relative performance of the various forecasts.

3.2 Use of the Model for Forecasting

We consider two possibilities:

(a) - Given the estimated probability forecast, a categorical forecast can
be provided by forecasting the category of maximal probability. We denote
this forecast by Fl.

(b) The model described by equation {(10) (or. more intuitively by
equation (9)). suggests an underlying continuous variable, say Z, with the
explanatory variable falling into categories 1.2,3 or 4 accordingly as Z ¢ 91.
91 <Z¢86,, 92 <Z2<86, 2> 93. respectively. Given values of the

covariates, and estimates B of B, we can estimate Z by (in the notation of

equation (10))

11




(17)

and then provide a categorical prediction that the storm imminence category is
1, 2, 3 or 4 according as

~ A~

<Z¢<8 Z>80

[ARS 91 61< Y AR 92. 6 3 3

2

This forecast is denoted by F2.

3.3 Evaluation of the forecasts

Since the two forecasts which we are considering here are categorical
forecasts, one plausible criterion for evaluating these forecasts would be the
number of correct forecasts achieved. Different forecasts can be readily
compared using this measure. Since the categories being forecast are ordered,
an incorrect forecast which is within one category of being correct is
presumably preferable to one which "misses” by two or more categories. Hence
an alternative measure of performance would be the number of forecasts which
are within one category of being correct. We use both of the above measures
in the paper to compare forecasts. As we will show, the different criteria
can, in some cases, lead to a different ranking of forecasts.

In estimating the predictive performance of the model using the above
measures, we omitted each data point in turn, estimated the model parameters
from all the remaining data, and then used the forecast procedures F1 and F2

to predict the category of the omitted data point. For comparative purpeses,

12
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i:o'!'
e we also used the standard techniques of discriminant analysis and multiple
< regression (using in the latter case as dependent variable the coded imminence
Vy,
22‘ of tropical storm variable, which takes values 1, 2, 3 and 4.
K.
119!
;i{ 4. Discussion
fé% The results of the cross-validation procedure, described in Section 3.3,
gﬁ' for forecast methods F1 and F2, and for discriminant analysis and multiple
..‘ ,
regression, are given in Tables 1,2,3 and 4 respectively. An overall summary

LRy

)
j@ of the relative performance of the various methods is presented in Table 5.
e .(J
ﬁ; We would emphasise that any conclusions drawn here in relation to the efficacy
'?h.,

. of the various procedures are valid only in relation to the present

fﬁi application. Broader statements about the general performance of these

e
‘f:f methods would require extensive further analysis.
L‘ It is clear from Table 5 that no single technique is clearly superior.
[} “‘
:vy Using the criterion of maximising the number of correct forecasts, the
13
Qg generalized linear model applied in this paper. with forecasting strategy F2,
ny
T{. is the best among those considered. However, if maximising the numbers of
;§g forecasts correct within one category is chosen as the comparative criterion,
;J} then multiple regression emerges as the optimal methodology.
o

o From Table 5 it is clear that the performance of discriminant analysis
'_‘. »
;kj is, in this application at least, somewhat inferior to that of the other
::ﬁ techniques. A comparison of Tables 1 and 2 (which use the same model but
'
fln{

- different forecasting strategies based on the model) reveals some interesting
<)
i{i facets about each of these strategies. Procedure Fl always forecasts efther
i
}{j category 1 or category 4, and produces the highest overall percentage of
3:} correct forecasts. Procedure F2 is less extreme, and "smears” che category 1
N
)
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forecasts over categories 1 and 2, and the category 4 forecasts over
categories 3 and 4; this has the effect of reducing the percentage of correct
forecasts but increasing the percentage of forecasts correct to within one
category. Multiple regression "smears"” the forecasts still further, with a
resultant decrease in the percentage of correct forecasts and increase in the
percentage correct to within one category. Multiple regression is. in fact,
the method which produces the highest overall percentage of forecasts correct
to within one category.

It is clear that the choice of strategy (forecasting procedure) among
those considered and described here will be greatly influenced by the relative
importance/seriousness of the various correct/incorrect forecasts. This
strongly suggests that a decision theoretic approach might be considered.
although, in practice, the specification of a loss function may be difficult

and may unduly influence the choice of strategy.

Acknowledgements: 1. G. O'Muircheartaigh and D. P. Gaver wish to express
their gratitude to, respectively, the Naval Environmental Prediction Research
Facility, Monterey, California and the Probability and Statistics Division of

the Office of Naval Research, for their support in connection with this work.
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Forecast Procedure:

Table 1

F1

Number of Forecasts

Forecast State

True
State 1 2 3 1 Tocal

1 27 0 ) 34 o1

2 10 0 0 32 22

> 4 0 0 20 24

4 11 0 ) 245 456
total 52 0o 0 531 583

Table 2
Forecast Procedure: F2
Number of Forecasts

True Forecast State
State 1 2 3 P Tocal

1 18 9 7 o7 o1

2 8 2 5 27 42

> ! 3 3 17 24

4 1 7 17 428 156
total 31 21 32 ey e

15




Forecast Procedure:

Table 3
Discriminant Analysis

Number of Forecasts

Forecast State

True
State 1 2 3 4 Total
1 27 12 16 P o1
2 14 S 9 14 42
> 3 3 14 4 24
4 14 26 62 54 e
total 58 46 101 378 583
Table 4
Forecast Procedure: Multiple Regression
Number of Forecasts
True Forecast State
State 1 2 3 2 Total
1 4 21 31 5 o1
2 0 11 21 10 =
> 0 2 18 4 24
4 0 11 110 335 e
total 4 405 180 54 o)
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Table 5

.':

Forecast % Correct X Forecasts
- Procedure Forecasts Correct with
one Category

£,
™ -
3

$"al%
A

< F1 81 86

F2 77 88

. Discriminant
43 Analysis 69 86

W . Multiple
Regression 63 90

4] 17
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